
I ,

Adaptive Spline Networks

Jerome H. Friedman

Technical Report No. 107
March, 1991

Laboratory for
Computational
Statistics

Department of Statistics
Stanford University

DEPARTMENT OF Sl"AnsTICS
Sequoia Hall

Stanford University
Stanford, CA 94305-4065

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAR 1991 2. REPORT TYPE

3. DATES COVERED
 00-00-1991 to 00-00-1999

4. TITLE AND SUBTITLE
Adaptive Spline Networks

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Stanford University,Department of Statistics,Stanford,CA,94309

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
A network based on splines is described. It automatically adapts the number of units unit parameters, and
the architecture of the network for each application.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

13

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

ADAPTIVE SPLINE NETWORKS

by

JEROME H. FRIEDMAN

STANFORD LINEAR ACCELERATOR CENTER

and

STANFORD UNIVERSITY

TECHNICAL REPORT NO. 107

MARCH 1991

PREPARED UNDER THE AUSPICES

OF

NATIONAL SECURITY AGENCY

GRANT MDA904-88-H-2029

DEPARTMENT OF STATISTICS

STANFORD UNIVERSITY

STANFORD, CALIFORNIA

ADAPTIVE SPLINE NETWORKS

Jerome H. Friedman

Department of Statistics

and

Stanford Linear Accelerator Center

Stanford University

Abstract

A network based on splines is described. It automatically adapts the number of units,

unit parameters, and the architecture of the network for each application.

1. Introduction

In supervised learning one has a system under study that responds to a set of simul­

taneous input signals {Xl··· x n }. The response is characterized by a set of output signals

{YI, Y2, ... , Ym}. The goal is to learn the relationship between the inputs and the outputs.

This exercise generally has two purposes: prediction and understanding. With prediction

one is given a set of input values and wishes to predict or forecast likely values of the

corresponding outputs without having to actually run the system. Sometimes prediction

is the only purpose. Often, however, one wishes to use the derived relationship to gain

understanding of how the system works. Such knowledge is often useful in its own right,

for example in science, or it may be used to help improve the characteristics of the system,

as in industrial or engineering applications.

The learning is accomplished by taking training data. One observes the outputs

produced by the system in response to varying sets of input values

(1)

These data (1) are then used to train an "artificial" system (usually a computer program)

to learn the input/output relationship. The underlying framework or model is usually

taken to be

(2)

with aveC €k I Xl··· Xn) = o. Here (2) Yk is the kth responding output signal, Jk IS a

single valued deterministic function of an n-dimensional argument (inputs) and €k is a

random (stochastic) component that reflects the fact that (if nonzero) Yk is not completely

1

specified by the observed iI.1puts, but is also responding to other quantities that are neither

controlled nor observed. In this framework the learning goal is to use the training data

to derive a function l(x! ... xn) that can serve as a reasonable approximation (estimate)

of the true underlying ("target") function Jk (2). The supervised learning problem can in

this way be viewed as one of function or surface approximation, usually in high dimensions

(n» 2).

2. Splines

There is an extensive literature on the theory of function approximation (see Cheney

[1986] and Chui [1988], and references therein). From this literature spline methods have

emerged as being among the most successful (see deBoor [1978] for a nice introduction

to spline methods). Loosely speaking, spline functions have the property that they are

the smoothest for a given flexibility and vice versa. This is important if one wishes to

operate under the least restrictive assumptions concerning h(x! ... xn) (2), namely, that

it is relatively smooth compared to the noise fk but is otherwise arbitrary. A spline

approximation is characterized by its order q [q = 1 (linear), q = 2 (quadratic), and

q = 3 (cubic) are the most popular orders]. The procedure is to first partition the input

variable space into a set of disjoint regions. The approximation lex! ... Xn) is taken to be

a separate n-dimensional polynomial in each region with maximum degree q in anyone

variable, constrained so that I and all of its derivatives to order q -1 are continuous across

all region boundaries. Thus, a particular spline approximation is determined by a choice

for q, which tends not to be very important, and the particular set of chosen regions, which

tends to be crucial. The central problem associated with spline approximations is how to

choose a good set of associated regions for the problem at hand.

2.1. Tensor-Product Splines. The most popular method for partitioning the input

variable space is by the tensor or outer product of interval sets on each of the n axes. Each

input axis is partitioned into](+ 1 intervals delineated by](points ("knots"). The regions

in the n-dimensional space are taken to be the (K + l)n intersections of all such intervals.

Figure 1 illustrates this procedure for K = 4 knots on each of two axes producing 25

regions in the corresponding two-dimensional space.

Owing to the regularity of tensor-product representations, the corresponding spline

approximation can be represented in a simple form as a basis function expansion. Let

2

j(x) = L WtBt(x) (3)
t

where {wtJ are the coefficients (weights) for each respective basis function Bt(x), and the

basis function set {Bt(x)} is obtained by taking the tensor product of the set of functions

(4)

over all of the axes, j = 1, n. That is, each of the K + q + 1 functions on each axis j

(j = 1,n) is multiplied by all of the functions (4) corresponding to all of the other axes

k (k = 1, n; k #- j). As a result the total number of basis functions (3) defining the

tensor-product spline approximation is

(5)

The functions comprising the second set in (4) are known as the truncated power functions:

(6)

and there is one for each knot location tkj (k = 1, K) on each input axis j (j = 1, n).

Although conceptually quite simple, tensor-product splines have severe limitations

that preclude their use in high dimensional settings (n » 2). These limitations stem from

the exponentially large number of basis functions that are required (5). For cubic splines

(q = 3) with five inputs (n = 5) and only five knots per axis (K = 5) 59049 basis functions

are required. For n = 6 that number is 531441, and for n = 10 it is approximately 3.5 X 109 •

This poses severe statistical problems in fitting the corresponding number of weights unless

the training sample is large compared to these numbers, and computational problems in

any case since the computation grows as the number of weights (basis functions) cubed.

These are typical manifestations of the so-called "curse-of-dimensionality" (Bellman [1961])

that afflicts nearly all high-dimensional problems.

3. Adaptive Splines

This section gives a very brief overview of an adaptive strategy that attempts to over­

come the limitations of the straightforward application of tensor-product splines, making

practical their use in high-dimensional settings. This method, called MARS (multivariate

adaptive regression splines), is described in detail in Friedman [1991] along with many

3

examples of its use involv.ing both real and artificially generated data. (A FORTRAN

program implementing the method is available from the author.)

The method (conceptually) begins by generating a tensor-product partition of the

input variable space using a large number of knots, K < N, on each axis. Here N (1) is the
'"

training sample size. This induces a very large (K + l)n number of regions. The procedure

then uses the training data to select particular unions of these (initially large number of)

regipns to define a relatively small number of (larger) regions most suitable for the problem

at hand.

This strategy is implemented through the basis function representation of spline ap­

proximations (3). The idea is to select a relatively small subset of basis functions

{B~(x)}~ C {Bt(x)}~uge
small

(7)

from the very large set (3) (4) (5) induced by the initial tensor-product partition. The

particular subset for a problem at hand is obtained through standard statistical variable

subset selection, treating tpe basis functions as the "variables". At the first step the best

single basis function is chosen. The second step chooses the basis function that works best

in conjunction with the first. At the mth step, the one that works best with the m - 1

already selected, is chosen, and so on. The process stops when including additional basis

functions fails to improve the approximation.

3.1. Adaptive Spline Networks. This section describes a network implementation

that approximates the adaptive spline strategy described in the previous section. The goal

is to synthesize a good set of spline basis functions (7) to approximate a particular system's

input/output relationship, using the training data. For the moment, consider only one

output Yj this is generalized later. The basic observation leading to this implementation

is that the approximation takes the form of sums of products of very simple functions,

namely the truncated power functions (6), each involving a single input variable,

Km

B~(x) = II (Xj(k) - tkj)~, (8)
k=l

and
M

j(x) = L wmB~(x). (9)
m=O

Here 1 :::; j (k) :::; n is an input variable and 1 :::; K m < n is the number of factors in the

product (interaction level).

4

The network is compr~sed of an ordered set of interconnected units. Figure 2 shows a

diagram of the interconnections for a (small) network. Figure 3 shows a schematic diagram

of each individual unit. Each unit has as its inputs all of the system inputs Xl ••• Xn and all

of the outputs from the previous units in the network Bo'" BM. It is also characterized

by three parameters: j, i, t. The triangles in Figure 3 represent selectors. The upper

triangle selects one of the system inputs, x j; the left triangle selects one of the previous

unit outputs, B t . These serve as inputs, along with the parameter t, to two internal

units that each produce an output. The first output is Bt . (Xj - t)~ and the second is

Bt . (t - Xj)~. The whole unit thereby produces two outputs BM+l and BM+2, that are

available to serve as inputs to future units. In addition to units of this nature, there is

an initial unit (Bo) that produces the constant output Bo = 1, that is also available to

be selected as an input to all units. The output of the entire network, j, is a weighted

sum (9) of all of the unit outputs (including Bo = 1). This is represented by the bottom

trapezoid in Figure 2.

The parameters associated with the network are the number of units Nu, the param­

eters associated with each one

(10)

and the weights in the final adder

{ }M=2.Nu
Wk 0 • (11)

The goal of training the network is to choose values for these parameters (10) (11)

that minimize average future prediction error (squared), that is the squared error on (test)

data not used as part of the training sample. An estimate of this quantity is provided by

the generalized cross-validation model selection criterion (Craven and Wahba [1979])

(12)

The numerator in (12) is the average squared-error over the training data. The denomina­

tor is an (inverse) penalty for adding units. The quantity (5· Nu + 1) is just the number

of adjustable parameters in the network. This GCV criterion (12) has its roots in ordi­

nary (leave-one-out) cross-validation and serves as an approximation to it (see Craven and

Wahba [1979]).

5

The training strategy. used is a semi-greedy one. The units are considered in order.

For the mth unit the weights of all later units are set to zero, that is

where Mmax is the maximum number of units in the network. The GCV criterion (12)

is then minimized with respect to the parameters of the mth unit (.em,jm, tm), and the

weights associated with all previous units as well as the unit under consideration {Wk15 m ,

given the parameter values associated with the previous units {.ei,ji, ti};n-l. This opti­

mization can be done very rapidly, O(nm2 N), using least squares updating formulae (see

Friedman [1991]). This process is repeated until Mmax units have been added to the net­

work. A post optimization procedure (weight elimination) is then applied to select an

optimal subset of weights to be set to zero, so as to minimize the GCV criterion (12). This

will (usually) decrease the GCV value since it includes a penalty for increasing the number

of nonzero weights

The semi-greedy training strategy has the advantage of being quite fast. The total

computation is O(nN M!ax) where n is the number of system inputs, N is the training

sample size, and Mmax is the maximum number of units to be included in the network

(before weight elimination). On a SUN SPARCstation, small to moderate sized problems

train in seconds to minutes, and very large ones in a few hours. A potential disadvan­

tage of this strategy is possible loss of prediction accuracy compared to a more thorough

optimization strategy. This tends not to be the case. Experiments with more complete

optimization seldom resulted in even moderate improvement. This is because units added

later to the network can compensate for the suboptimal settings of parameters introduced

earlier.

Figure 4 illustrates a (very small) network that might be realized with the MARS

procedure. The number above each unit is the system input that it selected. The letter

within each unit represents its knot parameter. The first unit necessarily has as its input

the constant Bo = 1. Its first output goes to the final adder but was not selected as an

input to any future units. Its second output serves as the selected input to the next two

units, but was eliminated from the adder by the final weight elimination, and so on. The

final approximation for this network is

j(x) = Wo + WI(X3 - s)+ + W2(S - X3)+(X7 - t)+

+W3(S - X3)+(X2 - u)+ + W4(S - X3)+(U - X2)+(XS - v)+

6

Two possible network topologies that might be realized are of special interest. One

is where all units happen to select the constant line Bo = 1 as their unit input. In this

case the resulting approximation will be a sum of spline functions each involving only one

input variable. This is known as an additive function (no interactions)

J

j(x) = L!i(Xj). (13)
j=l

An additive function has the property that the functional dependence on any variable is

independent of the values of all other input variables up to an overall additive constant.

Additive function approximations are important because many true underlying functions

f(x) (2) are close to additive and thus well approximated by additive functions. MARS

can realize additive functions as a subclass of its potential models.

Another potential network topology that can be realized by MARS is one in which

every unit output serves either as an input to one (and only one) other unit or goes to

the final weighted adder (but not both). This is a binary tree topology similar to those

generated by recursive partitioning strategies like CART (Breiman, Friedman, Olshen and

Stone [1984]). In fact, if one were to impose this restriction and employ q = 0 splines, the

MARS strategy reduces to that of CART (see Friedman [1991]). Thus, MARS can also

realize CART approximations as a subclass of its potential models.

MARS can be viewed as a generalization of CART. First by allowing q > 0 splines

continuous approximations are produced. This generally results in a dramatic increase in

accuracy. In addition, all unit outputs are eligible to contribute to the final adder, not

just the terminal ones; and finally, all previous unit outputs are eligible to be selected as

inputs for new units, not just the currently terminal ones.

Both additive and CART approximations have been highly successful in largely com­

plementary situations: additive modeling when the true underlying function is close to

additive, and CART when it dominately involves high order interactions between the in­

put variables. MARS unifies both into a single framework. This lends hope that MARS

will be successful at both these extremes as well as the broad spectrum of situations in

between where neither works well.

Multiple response outputs Y1 ... Yrn (1) (2) are incorporated in a straightforward man­

ner. The internal units and their interconnections are the same as described above and

7

shown in Figures 2 und 3. Only the final weighted adder unit (Figure 2) is modified to

incorporate a set of weights

(14)

for each response output (k = 1, m). The approximation for each output is

M

ik(X) = L wmkBm, k = 1, m.
m=O

The numerator in the GCV criterion (12) is replaced by

and it is minimized with respect to the internal network parameters (10) and all of the

weights (14).

4. Discussion

This section (briefly) compares and contrasts the MARS approach with radial basis

functions and sigmoid "back-probagation" networks. An important consequence of the

MARS strategy is input variable subset selection. Each unit individually selects the best

system input so that it can best contribute to the approximation. It is often the case that

some or many of the inputs are never selected. These will be inputs that tend to have

little or no effect on the output(s). In this case excluding them from the approximation

will greatly increase statistical accuracy. It also aids in the interpretation of the produced

model. In addition to global variable subset selectiun, MARS is able to do input variable

subset selection locally in different regions of the inpu;' variable space. This is a consequence

of the restricted support (nonzero value) of the basi5 functions produced. Thus, if in any

local region, the target function (2) depends on only a few of the inputs, MARS is able

to use this to advantage even if the relevant inputs are different in different local regions.

Also, MARS is able to produce approximations of low interaction order even if the number

of selected inputs is large.

Radial basis functions are not able to do local (or usually even global) input variable

subset selection as a part of the procedure. All basis functi0ns involve all of the inputs at

the same relative strength everywhere in the input variable space. If the target function

(2) is of this nature they will perform well in that no competi-,lg procedure will do better,

or likely even as well. If this is not the case, radial basis fWlctions are not able to take

8

advantage of the situation to improve accuracy. Also, radially symmetric basis functions

produce approximations of the highest possible interaction order (everywhere in the input

space). This results in a marked disadvantage if the target function tends to dominately

involve interactions in at most a few of the inputs (such as additive functions (13)).

Standard networks based on sigmoidal units of linear combinations of inputs share

the properties described above for radial basis functions. Including "weight elimination"

(Rumelhart [1988]) provides an (important) ability to do global (but not local) input vari­

able subset selection. The principal differences between MARS and this approach center

on the use of splines rather than sigmoids, and products rather than linear combinations

of the input variables. Splines tend to be more flexible in that two spline functions can

closely approximate any sigmoid whereas it can take many sigmoids to approximate some

splines. MARS' use of product expansions enables it to produce approximations that are

local in nature. Local approximations have the property that if the target function is badly

behaved in any local region of the input space, the quality of the approximation is not af­

fected in the other regions. Also, as noted above, MARS can produce approximations of

low interaction order. This is difficult for approximations based on linear combinations.

Both radial basis functions and sigmoidal networks produce approximations that are

difficult to interpret. Even in situations where they produce high accuracy, they provide

little information concerning the nature of the target function. MARS approximations

on the other hand can often provide considerable interpretable information. Interpreting

MARS models is discussed in detail in Friedman [1991]. Finally, training MARS networks

tends to be computationally much faster than other types of learning procedures.

9

References

Bellman, R. E. (1961). Adaptive Control Processes. Princeton University Press, Princeton,

NJ.

Breiman, L., Friedman, J. H., Olshen, R. A. and Stone, C. J. (1984). Classification and

Regression Trees. Wadsworth, Belmont, CA.

Cheney, E. W. (1986). Multivariate Approximation Theory: Selected Topics. Monograph:

SIAM CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 51.

Chui, C. K. (1988). Multivariate Splines. Monograph: SIAM CBMS-NSF Regional Con­

ference Series in Applied Mathematics, Vol. 54.

Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline functions. Esti­

mating the correct degree of smoothing by the method of generalized cross-validation.

Numerische Mathematik 31 317-403.

deBoor, C. (1978). A Practical Guide to Splines. Springer-Verlag, New York, NY.

Friedman, J. H. (1991). Multivariate adaptive regression splines (with discussion). Annals

of Statistics, March.

Rumelhart, D. E. (1988). Learning and generalization. IEEE International Conference on

Neural Networks, San Diego, plenary address.

10

FIGURE 1

FIGURE 3
Acl~pfjve SpJime tknii::

fQJltllmeiellS; ..R>JJ t

exten.l7\~ ~PlAts

X2,. • • • • • . • x,...,
~ :

~
BJ

.
8M

FIGURE 2
CTton fALO. Acla. pi: i v e oS p j 1m f! IVa fWf)'l I<

"1. a X:L.' • • • • • •)(.'"

~ I J, J,

~
~.I

~~~I 
~o....: 

fo--+--+---t .Rb 
~+------ jb 

t: .. 

1...0 

.Rc. 
+----;--+-~; J c. 

't t----'-~ 

1..0 

~ 
. fo i 

7 

t 

o :t 

A 

.f-

FIGURE 4 

v 


